
Parallel Recovery in
PostgreSQL

Koichi Suzuki

May 31st, 2023

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.2

Agenda
• Recovery Overview

• Possibility of recovery parallelism

• Additional rules and synchronization

• Implementation architecture

• Current achievement

• Remaining works

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.3

Recovery Overview
• WAL (Write-Ahead-Log) takes essential role in backup and recovery.
• This is also used in log-shipping replication.
• Recovery is done by dedicated startup process.

Database Data

WAL

Checkpoint

Buffer flush

Data update

Serialized

Data

WAL

Copy

Archive

Log shipping

Database in
recovery

mode

Read each WAL
record in series

Replay each WAL
record in series

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.4

Single replay thread, why?

● Single thread replay guarantees consistent replay
○ This is the order of write to the database
○ Replaying in the write order is simple and the safest.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.5

Current WAL replay architecture
WAL record type:

● Categorized by “resource manager”
○ For types of data object

■ Heap, transaction, Btree, GIN, ….
○ Each resource manager provides replay function for each record.

● Replay (“redo” in the source) reads the resource manager ID (type RmgrId) of
each WAL record and calls replay function for these resources.
○ StartupXLOG() in xlog.c

● Replay is done by dedicated startup process.

● Many more to handle in StartupXLOG()
○ Determine if postmaster can begin to accept connection,
○ Feedback commit/abort back to the primary,
○ Recovery target handling,

….(many more)...

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.6

Current list of RmgrId (as of V14/15)
XLOG
Transaction
Storage
CLOG
Database
Tablespace
MultiXact
RelMap
Standby
Heap2
Heap
Btree
Hash

Gin
Gist
Sequence
SPGist
BRIN
CommitTs
ReplicationOrigin
Generic
LogicalMessage

When new resource manager (for example, access method and index)
are added, new RmgrID and its replay function are added. No changes
are needed in current redo framework.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.7

Structure of WAL (simplified)

・・・

initdb
WAL segment,
fixed size, 16 MB
by default

W
AL record

LSN is the position of the WAL record from the very beginning.
64bit

● Each WAL segment has its own header,
● WAL record may span across multiple WAL segment files.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.8

Motivation of parallelism in the recovery?
Motivation

• Save time of restoration from the backup.
• Improve replication lag in log-shipping replication.
• At least we can replay WAL record for different database page in parallel.

Challenge (for example)
• There are many constraints which we must follow during WAL replay

○ When replaying COMMIT/ABORT, all the WAL records for the
transaction must have been replayed.

○ Some WAL records has replay information for multiple pages.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.9

Basic idea of constraints in parallel replay
1. For each database page, replay must be done in LSN order.

2. Replaying WAL for different pages can be done in different worker process in
parallel.

3. If WAL is not associated with database page, they are replayed in LSN order by
dedicated thread (transaction worker).

4. For some WAL record, such as timeline change, all the preceding WAL records
must have been replayed before replaying such WAL record.

5. If a WAL record is associated with multiple pages, they will be replayed by one of
the workers.

○ To maintain the first constraint, we need some synchronization (mentioned
later)

6. Before replaying commit/abort/prepare, it must be confirmed that all the WAL
record for the transaction must have been replayed. (mentioned later).

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.10

Worker processes for parallel recovery
All the worker processes are startup process or its child process.

● Reader worker (dedicated)
○ This is startup process itself. Read each WAL record and ques to the

distributor worker

● Distributor worker (dedicated)
○ Parses each WAL record and determine which worker process to handle.
○ If WAL record is associated with block data, then it is assigned to one of

the block worker based on the hash value of the block,
○ Add each WAL record to the queue of each worker process in LSN order.
○ Can be merged into reader worker.

● Transaction worker (dedicated)
○ Replays all the WAL records without block information.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.11

Worker processes for parallel recovery (cont.)
● Block worker (multiple, configurable)

○ Replays assigned WAL record.
○ Handling of multi-page WAL will be mentioned later.

● Invalid page worker (dedicated)
○ Target database page may be missing or inconsistent because table

might have been dropped by subsequent WALs.
○ Current recovery registers this as invalid page and make correction when

replaying corresponding DELETE/DROP WAL.
○ Now dedicated process to reuse existing code using hash functions

based on the memory context belonging to a process,
○ May receive queue from txn and block workers.
○ Can be modified to use shared memory. In this case, this worker is not

needed.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.12

Worker processes

Configured with three block workers.
Child of startup process.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.13

Shared data among workers

● WAL record and its parsed data is shared among workers through dynamic
shared memory (dsm).
○ Allocated by reader worker (startup) before other workers are folked.
○ Handling of multi-page WAL will be mentioned later.

● Other shared data structures are accommodated in the same dsm.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.14

Shared data among workers (cont.)
● Buffer for WAL and its parsed result,

● Status of outstanding transaction,
○ Latest LSN assigned to each block worker,

● Status of each worker,

● Queue to assign WAL to workers,

● History of outstanding WAL waiting for replay,
○ Used to advance replayed LSN.

● Data protection using spinlock.
○ No I/O or wait event should be associated while a spinlock is acquired.
○ Only one spinlock should be acquired by a worker.

■ May have to allow exception though…

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.15

WAL buffer is allocated in cyclic manner

● WAL buffer is allocated in cyclic manner to avoid fragmentation.
● WAL is eventually replayed and its data is freed.
● If we allocate WAL buffer in cyclic manner, we don’t have to worry about memory

fragmentation.
● Buffer is allocated at the start of main free area.
● When a buffer is freed, it is concatenated with surrounding free area and if

necessary, main free area info is updated.
● If free area is among allocated buffers, we don’t take care of it until it is

concatenated to main free area.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.16

WAL buffer is allocated in cyclic manner (cont.)

Main free
area Main free

area

Allocated Main free
area

Main free
area

Allocated

Main free
area

Allocated

Allocated

Main free
area

Allocated

● If sufficient main free area is not available, wait until other workers replay WALs and free buffers.
● If all workers is waiting for the buffer, reply aborts and suggests to enlarge shared buffer (configurable through GUC).
● With three block workers and ten queues for each worker, 4MB of buffer looks sufficient. We may need more with more

block workers and more queue depth.

(head)

(tail)

Alloc start Alloc start Alloc start

Allocated area grows.

Allocated area grows.

Allocated area grows.

Allocated area grows.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.17

Transaction status
● Composed of set of latest assigned WAL LSNs to each block worker for each

transaction.
● When the worker replays this LSN, it is cleaned.
● When transaction worker replays commit/abort/prepare, it checks all the WALs for

this transaction has been replayed.
● If not, waits until such workers replay all the assigned WALs (mentioned later).

LSN for
block
worker 1

LSN for
block
worker 2

LSN for
block
worker n

・・・
LSN for
block
worker 1

LSN for
block
worker 2

LSN for
block
worker n

・・・
LSN for
block
worker 1

LSN for
block
worker 2

LSN for
block
worker n

・・・
LSN for
block
worker 1

LSN for
block
worker 2

LSN for
block
worker n

・・・

For each outstanding
transaction

Waits until all the workers replay corresponding WAL
before commit/abort/prepare

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.18

Worker status

● Latest assigned WAL LSN,
● Latest replayed WAL LSN,
● Flags to indicate

○ the worker is waiting for sync from other workers,
○ If the worker failed,
○ If the worker terminated.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.19

WAL history

● Recovered point can be advanced only all the WALs are replayed.
● If any WAL has not been replayed, we need to wait to advance recovered point

until such WAL is replayed.

Wal history tracks this status.

Replayed Not replayed yet

Recovered point

Recovered point advances if all the previous WALs are replayed

Not yet Replayed

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.20

Synchronization among workers
• Dedicated data is queued asking for sync message.

• Sync message is sent via socket (unix domain udp). Each worker has its own
socket to receive synch.

• For multi-page WAL, another mechanism is implemented for performance.

Wal history tracks this status.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.21

Waiting for all the preceding WAL replay

● Distributor worker sends queue asking for synchronization.

● Distributor reads data from the target worker from the socket.

● When the target worker receives synchronization request, writes synchronization
data to the socket.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.22

Synchronization for multi-page WAL

● Multi-page WAL is assigned to all the block workers based on the hash value of the
page.

● WAL is associated with array of assigned workers and number of remaining
workers (initial value is number of assigned block worker).

● When a block worker receives WAL, it checks if remaining worker is one (only
myself).

○ If so, then the worker replays the WAL and then write synch to all the other
workers.

○ If not, then the worker waits sync from the above worker.

● This guarantees that WAL replay to each page is in the order of WAL LSN.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.23

Synchronization for multi-page WAL (cont.)

Wait some other block
worker replays

Last block worker to
pick up WAL. Replay
and sync others.

Multi-page WAL is assigned to all the block workers for each page (by
dispatcher worker).

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.24

Current status of the work and
achievement

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.25

Current Status

● Code is almost done.

● Still with many debug codes.

● Runs under gdb control.

● Parallelism looks working without issue.

● Existing redo functions are running without modification.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.26

Affected major source files
Modified/Added Source Outline

A src/backend/access/transam/parallel_replay.c
src/include/access/parallel_replay.h

Main parallel recovery logic.
Each worker loop.

M src/backend/access/transam/xlog.c
src/backend/access/transam/xlogreader.c
src/backend/access/transam/xlogutils.c
src/include/access/xlog.h
src/include/access/xlogreader.h
src/include/access/xlogutils.h

Read and analyze WAL into shared buffer
Pass WAL to distributor worker.

M src/backend/postmaster/postmaster.c
src/backend/postmaster/startup.c
src/backend/storage/lmgr/proc.c
src/backend/utils/activity/backend_status.c
src/backend/utils/adt/pgstatfuncs.c
src/include/miscadmin.h
src/include/postmaster/postmaster.h
src/include/storage/proc.h
src/include/utils/backend_status.h

Fork worker processes.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.27

Affected major source files (cont.)
Modified/Added Source Outline

M src/backend/utils/misc/guc.c Additional GUC parameters

M src/backend/utils/error/elog.c

src/backend/utils/activity/backend_status.c

src/backend/utils/misc/ps_status.c

Add workers to log and status.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.28

Additional major GUC parameters
Name Type Default Description

parallel_replay bool off Enable parallel recovery,

num_preplay_workers int 5 Number of parallel replay worker, including
reader/distributor/txn and invalid pag.

num_preplay_queues int 128 Number of queue element used to pass WAL to
various workers.

num_preplay_max_txn int max_connec
tions

Number of transactions running in parallel in
the recovery.

preplay_buffers int (calculated) Shared buffer size, allocated using dynamic
shared memory.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.29

Remaining work

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.30

Remaining work

● Cleasnup test code.

● Cleanup structure, which still have some unused data from past
try-and-error attempt.

● Validation of consistent recovery point determination.

● Determination of the end of WAL read.

● Port to version 16 or later.

● Run without gdb and measure the performance gain.

○ Archive recovery,

○ Log-shipping replications.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.31

Issues for further
discussion/development

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.32

Issues for discussion

● Synchronization:

○ Now using unix domain socket directly. May need some wrapper for portability.

● Queueing

○ Now using POSIX mqueue directly. It is very fast and simple and is supporting
multi to one queueing.

○ Is it portable to other environment such as Windows?

● Bringing to PG core

○ Large amount of code: around 7k lines with debug code.

○ Maybe around 4k lines without debug code.

○ Need expert’s help to divide this into manageable smaller pieces for commit
fest.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.33

Resources

Source repo

https://github.com/koichi-szk/postgres.git
Branch: parallel_replay_14_6

Test tools/environment

https://github.com/koichi-szk/parallel_recovery_test.git

Branch: main

PostgreSQL Wiki:

https://wiki.postgresql.org/wiki/Parallel_Recovery

They are now all public. Please let me know if you are interested in.

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.34

Thank you very much

Koichi Suzuki

koichi.suzuki@enterprisedb.com

koichi.dbms@gmail.com

© Copyright EnterpriseDB Corporation, 2023. All rights reserved.35

Challenge in the test
● Startup process starts before postmaster begins to accept connection.
● No direct means to pause and notice its PID to attach to gdb.
● Writes these information to a debug file, wait until it is attached to gdb and signal file is touched.

Paste to
terminal

Each terminal
runs gdb for
each worker

